Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

Water stewardship is achieved through a stakeholder’s inclusive process. It aims to guarantee long-term water security for all uses, including nature. Various actions can occur in the watershed’s recharge area, such as land cover restoration and artificial recharges. To measure the effectiveness of these actions, it is crucial to quantify their impact on water and communities. The common method for assessing the benefits of water stewardship activities is the volumetric water benefit accounting (VWBA) method. It allows for comparing the positive impact on water to the extracted groundwater volume for operations. We present the validation of the Positive Water Impact of DANONE Aqua operation at the Lido Site in West Java, Indonesia, within the VWBA framework. Different methods were used to evaluate three main water impact activities: (1) land cover restoration with reforestation, (2) artificial recharge with infiltration trenches and wells, and (3) water access. The curve number of the SWAT model was used to measure the reduced runoff impact of the land conservation action. The water table fluctuation method was employed to assess artificial recharge volume. The volume of pump discharge rates was used for water access. Results highlight the water impact at the Lido site, with the volumetric accounting of the three main activities. The discrepancy in the final calculation can be related to the variation in the field’s validated activities. VWBA framework is useful to validate water stewardship activities’ impact and plan further impactful actions.

Abstract

The Atlantis Water Resource Management Scheme (AWRMS) has operated since the 1970s. It demonstrates cost-effective and wise water use and recycling through visionary town planning and Managed Aquifer Recharge (MAR), offering water security to Atlantis’s residential and industrial sectors. For the AWRMS to succeed, it required integrating its water supply, wastewater and stormwater systems. Each of these water systems is complex and requires a multidisciplinary management approach. Adding to the challenges of inter-departmental co-operation and communication within a municipal system is the complexity and vulnerability of the coastal, primary Atlantis Aquifer. A combination of operational difficulties, biofouling, vandalism and readily available surplus surface water (leading to scheme augmentation from surface water) were negative drivers to decrease the reliance on groundwater supply from the scheme’s two wellfields. In response to the 2015-2018 drought experienced in the Western Cape of South Africa, the City of Cape Town has improved assurance of supply from the scheme and successfully built resilience by upgrading knowledge and insight through improved investigative techniques, monitoring, modelling and adaptive management of the various water resources and associated infrastructure systems. An integrated and adaptive management approach is essential to ensure continued water security and resilience to the effects of on-going urban expansion, population growth and climate change. Resilience is assured by institutions, individuals and communities taking timely and appropriate decisions, while the long-term sustainability of the AWRMS depends on proper management of all actors coupled with a high level of scientific confidence.

Abstract

The beneficial groundwater use in the Southern African Development Community (SADC) is well documented. Groundwater plays a vital role in the freshwater supply mix and, in some cases, is the only source of freshwater, especially in the arid region of SADC. However, the management of this resource is hampered by numerous challenges, such as lack of data, limited tools to leverage available data, lack of resources, institutional mismanagement, and climate change, amongst others. Of these challenges, the lack of data and the tools needed to transform this data into information has consequences for the decision-making process. Hence, this research attempts to address this challenge by demonstrating the use of big data and artificial intelligence (AI) to fill data gaps with new unconventional sources and model groundwater processes to transform data into actionable information. The presentation focuses on introducing the landscape of groundwater big data in SADC, followed by a review of regional AI applications. After that, novel approaches to using AI in various aquifers across SADC are demonstrated in their applicability to support groundwater management. Finally, the challenges facing the use of AI in SADC are discussed, followed by opportunities for new research based on the current state-of-the-art AI techniques. The results illustrate that AI can be a helpful tool for supporting groundwater management in SADC. However, the need for enhanced data collection is evident for these techniques to be generally applicable.

Abstract

Floods result in significant human and economic losses worldwide every year. Urbanization leads to the conversion of natural or agricultural land covers to low-permeability surfaces, reducing the infiltration capacity of the land surface. This amplifies the severity and frequency of floods, increasing the vulnerability of communities. Drywells are subsurface structures built in the unsaturated zone that act as managed aquifer recharge facilities to capture stormwater runoff. They are particularly well-suited for the urban environment because of their low land occupancy. In this study, we utilized an integrated surface-subsurface flow modelling approach to evaluate the effectiveness of dry wells in reducing urban runoff at a catchment scale. We developed a 3D model with HydroGeoSphere, characterizing a synthetic unconfined aquifer covered by a layer of low-permeability materials. Sensitivity analyses of land surface conditions, aquifer properties, dry well designs, and rainfall conditions were performed. Model results indicated that dry wells are more effective in reducing runoff when the land surface has a higher Manning roughness coefficient or the aquifer material has a higher hydraulic conductivity. Dry wells should be situated beneath drainage routes with high runoff flux to achieve optimal performance. Increases in dry well radius or depth enhance the infiltration capacity, but deeper dry wells can contaminate groundwater through infiltrating stormwater. Dry well performance declines with higher rainfall intensity, emphasizing the need for local rainfall intensity–duration–frequency (IDF) data to inform the design level of dry wells in specific catchments.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

Although methane occurrences have been documented in Karoo groundwater in the past, the advent of possible unconventional oil and gas extraction now made it important to determine the type and origin of this methane to assess the possibility of shallow-deep groundwater interaction. During groundwater surveys from 2016-2021, methane was detected at three sites in the Western Karoo: the Soekor sites KL1/65, QU1/65 and an unidentified shallow groundwater borehole (BHA). The Soekor wells were drilled in the 1960-1970s to depths of between 2500-3500 meters in South Africa’s search for oil. On the other hand, Borehole BHA was drilled in 1998 and only up to a depth of 298m. This study aimed to determine methane’s origin through gas and isotope analyses. To do this, groundwater, rock and soil samples were analysed to determine whether the methane is thermogenic or biogenic and its origin. We determined that methane was both thermogenic and biogenic and probably originated from different layers of the Karoo formations and that mixing occurs between deep and shallow aquifer systems at these Soekor sites. This information was used to develop a final conceptual model of what the Karoo underground system might look like and to make recommendations for establishing a groundwater baseline.

Abstract

Climate change is expected to have a significant impact on freshwater resources across the globe. Changes in the distribution and quantities of rainfall over the coming decade will impact various earth systems, such as vegetation, contributions to streamflow, sub-surface infiltration and recharge. While groundwater resources are expected to act as a buffer, changes in rainfall will ultimately impact the recharge process and, thus, groundwater reserves. Understanding these changes is a crucial step to adapt better and mitigate climate change’s impacts on water resources. This is valid in South Africa, where much of the population depends on groundwater as a freshwater supply. Hence, this research presents the status quo regarding climate change’s impacts on South Africa’s groundwater resources. Reviewing relevant literature, the impacts on recharge, groundwater quantity (storage changes), discharge and groundwater-surface water interactions, groundwater quality, and groundwater-dependent ecosystems are discussed. In addition, utilizing factors such as rainfall, slope and vegetation cover collected from CMIP6 climate projections, changes in groundwater recharge potential from the past through the present and future are demonstrated. The findings illustrate uncertainty over the long-term impacts of climate change on groundwater for different regions and various aquifers. However, global warming could lead to reduced recharge, which impacts groundwater reserves.

Abstract

The response of an alluvial and estuarine deposit aquifer, locally known as the Harbour Beds Formation, located in the coastal area of the Durban Metropolitan District to 48 hours of group well pumping is studied to understand its potential for groundwater supply and consequent seawater intrusion. Groundwater levels were monitored from the three pumped boreholes and piezometers. Similarly, EC, TDS and pH were monitored every hour from the boreholes and piezometers. Hydrochemical and water isotopes (2H and 18O) samples of groundwater were taken at 12, 18, 24, 36, 42 and 48 hours during pumping. The results indicate that the aquifer has a transmissivity, hydraulic conductivity and storativity of 48.97 m2/d, 1.7 m/day and 0.0032, respectively. The generally monitored EC, TDS, and pH have been fairly constant during the pumping period and didn’t show any seawater intrusion. Similarly, the hydrochemical data monitored for the three boreholes show general Na-CaHCO3-Cl-dominated groundwater throughout the pumping duration. However, uneven drawdown distribution and complex groundwater flow conditions indicate that the aquifer structure and hydraulic properties are heterogeneous. The water isotopes (2H and 18O) monitoring during the test pumping suggests spatial variability regarding water recharging the Harbour Beds aquifer. Though limited in area extent, the Harbour Beds Formation aquifer is a productive aquifer with acceptable water quality and can be a viable water source for domestic and industrial uses. However, continuous long-term monitoring of water quality and groundwater levels using data loggers is recommended to prevent induced seawater intrusion and contamination.

Abstract

Advances in groundwater age dating provide key information for groundwater recharge history and rates, which is of great significance for groundwater sustainable development and management. By far the, radioisotope 14C is the most frequently used in routine investigations. However, groundwater age can be misinterpreted given its dating range of up to 40 ka and its chemically active in nature. In comparison, 81Kr is less frequently used but chemically inert with a dating range of up to 1,300 ka, which overcomes the limit of 14C. Although it is not as precise as 14C when the groundwater age is younger than 40 ka, it may be helpful to determine the reliability of 14C dating results. In this study, we collected eight field samples from coastal aquifers in Nantong, China and analyzed them for 81Kr, 85Kr, and 14C. The 14C results show that all groundwater ages range from 2,400 to 35,300 years, with different correction methods yielding uncertainties of 1,500 to 3,300 years. Four of the 81Kr ages provided upper bounds, while three yielded groundwater ages which are consistent with the 14C dating results within measurement uncertainties. Interestingly, one 81Kr result gave an age of 189+11 - 12ka, whereas the corresponding corrected 14C age was less than 29,200 years. The great difference may indicate modern contamination in the sampling process or mixing between young and old groundwaters. Further investigation is needed to shed more lights in this case. Moreover, it shows the benefits of introducing 81Kr in routine hydrogeological investigations and the groundwater studies.

Abstract

Managed aquifer recharge (MAR) has become increasingly popular in Central Europe as a sustainable, clean, and efficient method for managing domestic water supply. In these schemes, river water is artificially infiltrated into shallow aquifers for storage and natural purification of domestic water supply, while the resulting groundwater mound can simultaneously be designed to suppress the inflow of regional groundwater from contaminated areas. MAR schemes are typically not managed based on automated optimization algorithms, especially in complex urban and geological settings. However, such automated managing procedures are critical to guarantee safe drinking water. With (seasonal) water scarcity predicted to increase in Central Europe, improving the efficiency of MAR schemes will contribute to achieving several of the UN SDGs and EU agendas. Physico-chemical and isotope data has been collected over the last 3-4 decades around Switzerland’s largest MAR scheme in Basel, Switzerland, where 100 km3 /d of Rhine river water is infiltrated, and 40 km3 /d is extracted for drinking water. The other 60 km3 /d is used to maintain the groundwater mound that keeps locally contaminated groundwater from industrial heritage sites out of the drinking water. The hydrochemical/isotope data from past and ongoing studies were consolidated to contextualize all the contributing water sources of the scheme before online noble gas and regular tritium monitoring commenced in the region. The historical and the new continuous tracer monitoring data is now used to inform new sampling protocols and create tracer-enabled/assimilated groundwater-surface water flow models, vastly helping algorithm-supported MAR optimization

Abstract

Research on Fracking in the Karoo basin yielded results that, if not considered “unexpected”, can be considered as “should have been foreseen”. Some aspects substantially impacting research on fracking are often overlooked when undertaking scientific research on an emotional topic such as fracking. This presentation aims to provide insights and recommendations based on the experiences and outcomes of current research on hydraulic fracturing or “fracking” in the Karoo basin of South Africa. Fracking has been a subject of significant research and debate over the past decade. Topics, each with its challenges, include 1) The scale of exploration/production extent (Site specifics), 2) Importance of robust and independent research, 3) Need for stakeholder engagement and participation, 4) The complexity of environmental risks and impacts, 5) The need for a precautionary approach, 6) Regulatory and policy challenges. Several methodologies can be relied upon to compare outcomes of different aspects of fracking research in the Karoo, such as 1) Comparative analysis, 2) Meta-analysis, 3) Stakeholder mapping and analysis and 4) Data visualisation. A combination of these methodologies can be used to compare outcomes of different aspects of fracking research in the Karoo and provide insights and recommendations for future decision-making and planning. Ultimately, the decision to allow Fracking should be based on a balanced assessment of potential risks and benefits, considering long-term impacts on the environment, economy, and communities.

Abstract

The serpentinization of ultramafic rocks is a process in which minerals of ferromagnesian nature (e.g., olivine) are transformed into serpentine and produce groundwater with a very high pH. In these settings, CH4 can be produced by combining H2 from serpentinization and CO2 from the atmosphere, soil, carbon-bearing rocks, or mantle, although the microbial generation of CH4, mediated by methanogens utilizing CO2, formate and/or acetate can be another source in these aquifers. In this sense, the hydrochemistry of hyperalkaline springs can provide valuable information about gas origin. The Ronda peridotites (Malaga province, Spain) are one of the world’s largest outcrops of the subcontinental mantle (~450 km2). Hyperalkaline springs (pH>10) emerging along faults present a permanent low outflow (<1 L/s), Ca2+- OH- facies and residence times exceeding 2,000 years. The fluids, poor in Mg2+ and rich in K+, Na+, Ca2+ and Cl-, also contain significant concentrations of dissolved CH4 and other hydrocarbons. Water samples have been collected from eight hyperalkaline springs and analyzed for major, minor and trace elements, including Platinum Group Elements (PGE) and Total Organic Carbon (TOC). The most mobile PGEs (Pd and Rh) are present in all the springs, indicating the existence of potential catalysts for the abiotic synthesis of CH4. High TOC concentrations are observed in some studied springs where previous analyses (i.e., bulk CH4 isotopes) have indicated a microbial CH4 origin.

Abstract

Identifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface water and groundwater resource management, and ecosystem protection. This study seeks to identify potential GW-SW discharge and recharge areas around the Barotse Floodplain. The results of remote sensing analysis using the Normalised Difference Vegetation Index (NDVI) show that the vegetation is sensitive to the dynamics of groundwater level, with shallower levels (< 10 m) in the lower reaches compared to deeper levels (>10 m) in the upper catchment). These zones are further investigated and likely represent geological variability, aquifer confinement and the degree of GW-SW interactions. GW-SW interactions likely are influenced by an interplay of factors such as water levels in the groundwater and surface level and hydrogeological conditions. Based on the findings, the wetland hosts riparian vegetation species responsive to the groundwater dynamic. NDVI can thus be used as a proxy to infer groundwater in the catchment. Therefore, effective water resources management of the floodplain should be implemented through conjunctive management of groundwater and surface water.

Abstract

Faced with climate change and population growth, Dutch drinking water company Dunea is looking for additional water resources to secure the drinking water supply for the coastal city of The Hague. One of the options is to enhance the existing managed aquifer recharge (MAR) system in the coastal dunes by extracting brackish groundwater. Extracting brackish groundwater provides an additional drinking water source, can protect existing production wells from salinization, and can effectively stabilise or even grow the freshwater reserves in the coastal dunes, according to numerical groundwater modelling. To test this concept in the field, a three-year pilot commenced in January 2022 at Dunea’s primary drinking water production site, Scheveningen. Brackish groundwater is extracted at a rate of 50 m3 /h with multiple well screens placed in a single borehole within the brackish transition zone (85-105 meters below sea level). The extracted groundwater is desalinated by reverse osmosis, whilst the flow rate and quality of extracted groundwater are continuously monitored. The hydraulic effects and the dynamic interfaces between fresh, brackish and saline groundwater are monitored with a dense network of piezometers, hydraulic head loggers and geo-electrical measurement techniques. At the IAH conference, the monitoring results of the pilot will be presented. Based on the results of the field pilot and additional numerical modelling, the feasibility of upscaling and replicating the concept of brackish groundwater extraction to optimize MAR and increase the availability of fresh groundwater in coastal areas is reflected.

Abstract

In the Federal Capital Territory of Abuja (Abuja FCT, Nigeria), a population growth of about 400% between 2000 and 2020 has been reported. This trend, coupled with the persisting urban sprawling, is likely to result in severe groundwater quality depletion and contamination, thus undermining one of the area’s main freshwater supplies for drinking purposes. In fact, groundwater in Nigeria and Abuja FCT provides over 70% of the drinking purposes. Results of a groundwater vulnerability assessment that compared land use data from 2000 and 2020 showed that the region had been affected by a dramatic change with an increase in urbanized (+5%) and agricultural (+27%) areas that caused nitrate concentrations to exceed the statutory limit for drinking purposes in more than 30% of the monitored wells in 2021 and 40% in 2022. Although fertilizers are generally considered the main source of nitrate contamination, results suggest a possible mixed (urban and agricultural) pollution origin and a legacy of previous nitrogen pollution sources. The comparison between the DRASTIC-LU map and nitrate concentrations shows that the highest values are found in urban/peri-urban areas, in both shallow and deep wells. This investigation is the first step of a comprehensive nitrate pollution assessment in the region, which will provide decision-makers with adequate information for urban planning given the expected population growth in the area

Abstract

This study describes a novel methodology for predicting spring hydrographs based on Regional Climate Model (RCM) projections to evaluate climate change impact on karstic spring discharge. A combined stochastic-analytical modelling methodology was developed and demonstrated on the Bukovica karst spring catchment at the Durmitor National Park, Montenegro. As a first step, climate model projections of the EURO-CORDEX ensemble were selected, and bias correction was applied based on historical climate data. The regression function between rainfall and peak discharge was established using historical data.

The baseflow recession was described using a double-component exponential model, where hydrograph decomposition and parameter fitting were performed on the Master Recession Curve. Rainfall time series from two selected RCM scenarios were applied to predict future spring discharge time series. Bias correction of simulated hydrographs was performed, and bias-corrected combined stochastic-analytical models were applied to predict spring hydrographs based on RCM simulated rainfall data. Simulated climate scenarios predict increasing peak discharges and decreasing baseflow discharges throughout the 21st century. Model results suggest that climate change will likely exaggerate the extremities regarding climate parameters and spring discharge by the end of the century. The annual number of drought days shows a large variation over time. Extremely dry years are periodic, with a frequency between 5-7 years. The number of drought days seems to increase over time during these extreme years. The study confirmed that the applied methodology can successfully be applied for spring discharge prediction

Abstract

The potential role of groundwater in supporting the resilience of human societies is garnering increased attention in the context of climate change. Much of this attention focuses on the resilience of the groundwater resource itself. Less attention has been given to the way that groundwater is used by society and how this may influence human-centred resilience outcomes, particularly in urban settings. In this paper, I explore how questions of scale are fundamental to the role of groundwater in the resilience of urban areas, from the scale of individual households to more regional and catchment-based notions of scale. It is these variations in the geographies of urban groundwater exploitation that provide for the challenges of groundwater governance. Drawing on the practices revealed across 5 diverse cities in sub-Saharan Africa; the paper highlights the variety of ways that groundwater promotes the resilience of urban areas to water stress. The paper finds that groundwater can accommodate a prevalence of ‘self-supply’ and market-based models as urban populations seek to counter failings in public supply provision. Whilst these actions promote the resilience of the urban setting in the short to medium term, they raise important questions for the longer-term sustainability of the resource. The paper considers the implications of these questions for the future governance of resilient groundwater resources and the role of groundwater as part of a wider strategy for urban resilience.

Abstract

The alluvial aquifer in the Varaždin region has a long-standing problem with high groundwater nitrate concentrations, mainly from agricultural activities. Since groundwater is used in public water supply networks, it is important to ensure its sustainable use. The aquifer is also used to exploit gravel and sand, and the increased demand for this valuable construction material causes the excavation of gravel pit lakes, making groundwater more vulnerable. Although engineered processes can remove nitrate from groundwater, natural attenuation processes should be investigated to understand the nitrogen behaviour and additional mechanisms for groundwater remediation. Previous research has shown nitrate is a conservative contaminant in the critical zone. Aerobic conditions within an aquifer system prevent significant denitrification. Thus, nitrification is the main process controlling nitrogen dynamics in groundwater. Since groundwater and gravel pit lakes are hydraulically connected, and natural nitrate attenuation exists in these lakes, an additional mechanism for groundwater remediation is possible. This work used isotope hydrochemistry and groundwater modelling to investigate gravel pit lakes as possible sites to reduce nitrate concentration in groundwater. Based on the isotopic composition of groundwater and nitrate concentrations, water balance and solute mass balance were calculated, which made it possible to estimate the nitrate attenuation rate in gravel pit lakes. The gained retardation factor was applied to the groundwater flow and nitrate transport model through several scenarios to evaluate the contribution of gravel pit lakes in reducing the groundwater nitrate concentrations

Abstract

The identification of hydrogeological boundaries and the assessment of groundwater’s quantitative and qualitative status are necessary for delineating groundwater bodies, according to the European Guidelines. In this context, this study tries to verify the current delineation of groundwater bodies (GWBs) through hydrogeochemical methods and multicriteria statistical analyses. The areas of interest are three GWBs located in the northern part of Campania Region (Southern Italy): the Volturno Plain, a coastal plain constituted of fluvial, pyroclastic and marine sediments; the Plain of Naples, an innermost plain of fluvial and pyroclastic sediments and the Phlegrean Fields, an active volcanic area with a series of monogenic volcanic edifices. Hydrogeochemical methods (i.e., classical and modified Piper Diagram) and multivariate statistical analyses (i.e., factor analysis, FA) were performed to differentiate among the main hydrochemical processes occurring in the area. FA allowed the handling many geochemical and physical parameters measured in groundwater samples collected at about 200 sampling points in the decade of the 2010s. Results reveal five hydrogeochemical processes variably influencing the chemical characteristics of the three GWBs: salinization, carbonate rocks dissolution, natural or anthropogenic inputs, redox conditions, and volcanic product contribution. Hydrogeochemical methods and FA allow the identification of areas characterised by one or more hydrogeochemical processes, mostly reflecting known processes and highlighting the influence of groundwater flow paths on water chemistry. According to the current delineation of the three GWBs, some processes are peculiar to one GWB, but others are in common between two or more GWBs.

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

The Sandveld (Western Cape, South Africa) is a critical potato production area on the national production scale, especially for table potatoes. As the area is situated on the continent’s West Coast, it is a dry area of low rainfall (less than 300 mm /a). The bulk of the irrigation water for agriculture in the region is derived from groundwater. Approximately 60 Mm3 /a of groundwater is abstracted for irrigation of potatoes in the broader Sandveld, assuming a 4-year rotation cycle. The abstraction of groundwater is a sensitive issue in the Sandveld as groundwater also plays a critical role in supplying water to towns in the area, water for domestic use, and it also plays a critical role in sustaining sensitive ecosystems (such as the coastal lake Velorenvlei).

The groundwater resources have been monitored for nearly thirty years now. The results indicate areas where a slow but consistent decline in groundwater levels and groundwater quality is occurring. The trends can also predict when the aquifers will become depleted, and the groundwater will become too saline for use. This is critical information for management interventions to be implemented now to protect the area from irreversible damage.

Abstract

The research aims to reveal possible ways of formation of the chemical composition of mineral and fresh groundwater in Quaternary sediments of the coastal plain of Northern Sinai. Statistical assessment of the distribution of various hydrochemical indicators of mineral and fresh groundwater has been carried out according to the following data samples: 1) the general population for all Quaternary deposits (164 wells); 2) the central zone (74 wells); the eastern zone (25 wells); the western zone (65 wells). The following variables were assessed: total dissolved solids (TDS) (in ppm), concentrations of major components (in epm and % epm), pH value and the depth of the sampled well (ds) (in meters). The physicochemical equilibria between the groundwater and rock–forming carbonate and sulfate minerals were calculated using the PHREEQC software. Saturation indices (SI) for groundwater of three zones in relation to various rock-forming minerals were analyzed. Correlation relationships were obtained for TDS, major components and some genetic coefficients ((Requ=(Na++K+)/ (Ca2++Mg2+); Na+/Cl-; SO4 2-/Cl-; Ca2+/SO4 2-). It was concluded that the groundwater chemical composition is defined by infiltration recharge and/or intrusion of Mediterranean seawater.

Most likely, during short-term flood periods, the infiltration into aquifers significantly exceeds the evaporation. Despite the relatively high evaporation rate, the degree of groundwater metamorphization is below the saturation level in relation to sulfates and carbonates. The research is of great practical importance for assessing freshwater resources to provide potable water supply

Abstract

Knowledge of the nature and extent of groundwater-dependent ecosystems (GDE) at an aquifer scale enables incorporating ecological water requirements in integrated groundwater resource management activities, including transboundary aquifer cases (TBA). This way, sustainable groundwater management and functional ecosystem services can be achieved. Therefore, understanding groundwater- ecosystems-surface water interactions is crucial for assessing resources’ resilience or susceptibility towards certain impacts. Unfortunately, this subject is widely under-researched with fragmented information, especially in southern Africa. This study was thus initiated to understand groundwater processes controlling the maintenance of Tuli-Karoo TBA (Botswana, South Africa, Zimbabwe) GDEs towards developing a model that can be utilised in impact assessments, especially in climate change. The employed approach included stable isotope analysis (mainly 2 H and 18O) for groundwater, streams, springs, rainwater, vegetation, and soil; spatial imagery and GIS classification (incl. NDVI, NDRE, NDWI); and plant moisture stress techniques. Identified GDEs in the study area (characterized by intergranular alluvium aquifer underlain by the Karoo sandstone of intergranular and fractured secondary aquifer type) are riparian vegetation, floodplain and depression wetlands, and springs. Precipitation recharged alluvium aquifer’s contribution to Limpopo River baseflow is negligible as the discharge is mainly through springs and evapotranspiration. Monitoring data scarcity and skewed availability among sharing countries hamper research and its output applicability to TBA’s entirety. Therefore, data generation, exchange, and joint databases development are crucial for sustainable comanagement of groundwater and supported ecosystems and science-based decision-making.

Abstract

Due to technical, social, and economic limitations, integrated groundwater management presents a significant challenge in developing countries. The significance of this issue becomes even more pronounced in groundwater management, as this resource is often overlooked and undervalued by decision-makers due to its status as a “hidden resource,” despite the fact that it provides multiple ecosystem services. This study aims to establish the technical hydrogeological foundation in rural basins of central Bolivia through alternative, simplified, and cost-effective methods and tools. The study includes applying geophysical techniques, such as Electrical Resistivity Tomography, to determine the conceptual hydrogeological model of a micro-basin. In addition, a soil water balance approach was applied, characterizing 24 biophysical variables to identify groundwater recharge zones, while global circulation models provided a substitute for unreliable meteorological data. Furthermore, a participatory model was developed to identify recharge areas in upper basin areas within the framework of developing a municipal policy for their protection. The participatory model included local knowledge in all stages of methodology development, considering the characteristics of the local plant communities and the spatial distribution of local rainfall. The research findings have already contributed to resolving socio-environmental conflicts in Bolivia and establishing a foundation for effective water governance by empowering local rural communities. This study has demonstrated the feasibility of using alternative, simplified, and low-cost methods and tools to establish the technical hydrogeological basis, which can inform public policies to promote sustainable groundwater management in developing countries.

Abstract

The work presented relates to the influence of regional scale dykes in groundwater flow in karst aquifers of northern Namibia’s Otavi Mountainland around the towns of Tsumeb, Otavi and Grootfontein. The aquifers are well studied and are an important water source locally and for populated central areas of the country during drought. The area has parallel, eastwest trending elongated valleys and ranges shaped by the underlying synclines and anticlines of folded carbonate units of the Damara Supergroup. The role of the regional scale dolerite dykes that cut across the dolomitic aquifers has not been fully appreciated till recently. Aeromagnetic data is effective in mapping the dykes in detail. The dykes trend in a north-easterly to northerly direction into the Otavi Platform carbonate rocks. The dykes are normally magnetised with the odd remanent dyke. They consist mainly of dolerite, although in some cases are described as tectonic with hydrothermal magnetite and no dolerite material. The dykes appear to focus southwest of the Otavi Mountainland near the Paresis Alkaline Intrusive (137Ma). Examination of existing hydrogeological data reveals different characteristics of the dykes that influence groundwater flow, forming: a) conduits that enhance flow along contact zones, b) barrier to flow with compartmentalization and c) partial barrier to flow. An advantage has been taken of the understanding gained to manage mines’ dewatering and pumped water management. Future water resources management and contaminant studies will need to recognise the compartmentalised nature of the aquifer

Abstract

This study aims to investigate the groundwater circulation and hydrogeochemical evolution in the coastal zone of Xiamen, southeast China, which can provide a reference for the development of water resources and the protection of soil and water environment in the coastal areas. A close connection between mountains and the sea characterizes the southeast coast of China. Although rainfall is abundant, the topography limits it, and water resources quickly run into the sea. Coupled with a concentrated population, water is scarce. In addition, this area’s water and sediment environment are influenced by human activities and geological conditions. Its changing trend also needs further study. Therefore, using hydrochemical analysis, isotope technology, numerical simulation and other techniques, this study took Xiamen City on the southeast coast as an example to study the groundwater circulation and the environmental evolution of water and sediment. The results show that although the aquifer is thinner, there is still deep groundwater circulation, and the seawater intrusion range of deep aquifer is much further than that of shallow aquifer. In addition to geological causes, human activities have become the main factors affecting groundwater quality, especially nitrate and lead. The nitrate content even exceeds the content of the major ionic components. Introducing land-based pollutants has also contributed to declining seawater and sediment quality in the Bay area. In general, the main pollutants in coastal areas include nutrients, heavy metals and new pollutants.

Abstract

Groundwater represents a crucial source of drinking water in the Lille metropolitan area. Despite its importance, the resource is vulnerable to the potential evolution of land use: recharge, runoff and evapotranspiration processes in a soil-sealing context and changes in cultural practices. As a result, stakeholders emphasized the importance of exploring the influence of land use on groundwater to ensure sustainable resource management and enhance territorial planning. The 3D hydrodynamic model helped manage groundwater resources, but the (MARTHE code) has a significant limitation in that it does not consider the impact of land use evolution. We propose to investigate the contribution of a hydrological distributed numerical approach incorporating land cover data in groundwater modelling compared to a global approach at the scale of a peri-urban territory. To do so, we use the HELP code by considering the temporal and spatial evolution of land use and their associated characteristics, such as vegetation and soil properties, to detail recharge and runoff over more than 20 years that we incorporate into the initial groundwater model.

The two approaches yielded comparable global water balance results. However, at the local scale, the model accounting for land use showed significantly different hydric components. Choosing the appropriate model depends on the specific research question and spatial scale, and considering land use evolution is crucial for accurate urban planning impact assessments, especially at the district level.

Abstract

Recharge is one of the most significant parameters in determining the sustainability volume of groundwater that can be abstracted from an aquifer system. This paper provides an updated overview and understanding of potential and actual groundwater recharge and its implications for informing decision-makers on efficiently managing groundwater resources. The paper argues that the issue of potential and actual recharge has not been adequately addressed in many groundwater recharge studies, and if not properly addressed, this may lead to erroneous interpretation and poor implementation of groundwater resource allocations. Groundwater recharge has been estimated using various methods, revised and improved over the last decade. However, despite numerous recharge methods, many studies still fail to distinguish that some assess potential recharge while others estimate actual recharge. The application of multiple recharge methods usually provides a wide range of recharge rates, which should be interpreted in relation to the type of recharge they represent; as a result, the wide range of recharge findings from different methods does not necessarily imply that any of them are erroneous. A precise distinction should, therefore, be made between the potential amount of water available for recharge from the vadose zone and the actual recharge reaching the water table. This study cautions groundwater practitioners against using “potential recharge values” to allocate groundwater resources to users. The results of this paper may be useful in developing sustainable groundwater resource management plans for water managers.

Abstract

The Kavango West and East regions are situated in a semi-arid area northeast of Namibia and bounded by the perennial Okavango River on the northern border. Groundwater in the area is the main source of water supply for the inhabitants living further from the river. In addition, most bulk water users along the river have boreholes for their water supply. With a semi-arid climate, drought in the regions is common and inflicts devastating effects on local communities. More drought relief boreholes are being drilled to sustain communities, increasing the dependency of the inhabitants on groundwater. The complexity of the behaviour and nature of the groundwater in the regions is poorly understood, and there are no strategies to manage these aquifers properly. As a result, an attempt was made to better understand the groundwater potential by examining several hydrogeological factors involved. A basic water-balance approach was used in determining the groundwater potential of the middle and lower Kalahari aquifers. The total resource potential for the entire region is estimated at 144 447.16 x 106 m3 /a, demonstrating great resource potential with significant storage space.

The greatest potential is shown in the middle Kalahari aquifers, comprising about 94% of the total resource. Groundwater recharge, as one of the hydrogeological factors, was determined using the chloride mass balance method, giving an average of 6.03 mm/a for the entire study area. If utilized sustainably, the Kalahari aquifers can sustain most communities within the two regions, especially those further from the Okavango River.

Abstract

PFAS and pharmaceuticals in groundwater are two of many synthetic compounds currently under the attention of many researchers and environmental administration in Europe, especially in light of the revision of the EU Groundwater Directive 2006/118/EU. The two types of substances were first included in the voluntary groundwater watch list and were first formally regulated at the EU scale. This regulation implies that they will be obligatory to be monitored within national monitoring programmes for groundwater body status assessment procedures across the EU. While there is no doubt about the need to regulate the presence of these substances in groundwater, sampling procedures and QC/QA protocols may be challenging to implement as no official guidelines exist. Although scientific literature allows us to define protocols usually based on precautionary principle, these may be too difficult and expensive to implement at the national scale monitoring. This article describes a work that the Polish Geological Institute – National Research Institute undertook to define an optimal sampling process for PFAS and pharmaceuticals in groundwater. Experimentally tested factors included cleaning pumps between sampling sites, the need for using protective suits during sampling and the influence of ambient air on sample quality. Results showed that sampling protocols for PFAS and pharmaceuticals do not need to be modified concerning current protocols as these seem to be sufficient to protect groundwater samples from unintentional cross-contamination.

Abstract

On the slopes of Mount Bromo, East Java (Indonesia), the land use of the Rejoso watershed is dominated by rice fields and sugarcane ( lowland area ), agroforestry (midstream) and horticulture and pine plantation in the upstream part. During the last three decades, some land changes driven by socio-economic development, with conversion of agroforests to rice fields, tree monoculture and horticulture, and the development of urban areas nearby, increased pressure on the watershed. Intensive irrigated rice cultivation is using groundwater from free-flowing artesian wells. Due to a lack of management, the hydraulic head and discharge of the major spring are decreasing. Rejoso watershed, like others in urban and rural areas in Indonesia, is facing challenges to guarantee sustainable integrated water resources management. Collective solutions have been implemented between 2016 and 2022 within this watershed. In the downstream, sustainable paddy cultivation and wells management with local stakeholders, aiming at improving water efficiency, have been piloted on 65 ha with 184 farmers. Water governance at the district level was re-activated and strengthened thanks to the project. Various capacity-building tools were used via radio talk shows and workshops. Members of the watershed forum of Pasuruan took some actions to reshape the structure and set up a roadmap. The implementation of collective solutions in the field was a real catalyst and serves all levels of water governance, as it is replicable. This example will be explained and illustrated after the presentation of the socio-hydrogeological context.

Abstract

Northern India and Pakistan face some of the world’s most challenging surface water and groundwater management issues over the coming decades. High groundwater abstraction, widespread canal irrigation, increases in glacier melt and changes to rainfall impact the dynamics of surface water/groundwater interactions in the Indus Basin and Upper Ganges. Studies using newly available data from long-term hydrographs, high-frequency stable isotope sampling and campaign sampling for groundwater residence time indicators are shedding light on the complex interactions between groundwater, surface water and rainfall. Interactions vary spatially: (1) with distance down the catchment, related to the prevailing rainfall gradient, and (2) with position in the canal command, both distance from barrage and distance from feeder canals. Interactions are also observed to vary with time due to (1) the historical evolution of the canal network, (2) patterns in precipitation over the past 120 years, (3) changes in river flow due to glacial melting, and (4) increased pumping, which has also led to increased capture of surface water. Only by understanding and quantifying the different processes affecting groundwater/surface water coupling in the Indus and Upper Ganges is it possible to forecast future groundwater storage changes.

Abstract

Transboundary aquifers in Europe are managed according to the Water Framework Directive (WFD) through international river basin districts (IRBD) management plans. Paragraph 11 in the WFD states that each Member State shall ensure the establishment of a programme of measures, PoM, for each river basin district, RBD, or part of an IRBD within its territory. Easy access to harmonized data from neighbouring countries part of the aquifer is essential to analyse the groundwater status and make proper PoMs. The datasets must be available in machine-readable format via an Application Programming Interface (API) and, where relevant, as a bulk download. The metadata describing the data shall be within the scope of the Infrastructure for Spatial Information in the European Community (INSPIRE) data themes set. The datasets must also be described in a complete and publicly available online documentation describing the data structure. Using a questionnaire survey of nine European countries, groundwater sampling and analysis routines are compared to evaluate if data are comparable and accessible across borders.

Abstract

Machine learning techniques are gaining recognition as tools to underpin water resources management. Applications range widely, from groundwater potential mapping to the calibration of groundwater models. This research applies machine learning techniques to map and predict nitrate contamination across a large multilayer aquifer in central Spain. The overall intent is to use the results to improve the groundwater monitoring network. Twenty supervised classifiers of different families were trained and tested on a dataset of fifteen explanatory variables and approximately two thousand points. Tree-based classifiers, such as random forests, with predictive values above 0.9, rendered the best results. The most important explanatory variables were slope, the unsaturated zone’s estimated thickness, and lithology. The outcomes lead to three major conclusions: (a) the method is accurate enough at the regional scale and is versatile enough to export to other settings; (b) local-scale information is lost in the absence of detailed knowledge of certain variables, such as recharge; (c) incorporating the time scale to the spatial scale remains a challenge for the future.

Abstract

Rising shallow groundwater temperatures are observed in many cities worldwide and are expected to increase further over the next century due to anthropogenic activities and climate change. The impact of groundwater temperature increase on groundwater quality is poorly understood. This study conducted two high-spatial-resolution campaigns in Vienna (Austria, autumn 2021/ spring 2022). At 150 wells, a comprehensive parameter set (e.g. major ions, nutrients, and water stable isotopes) was analyzed in groundwater collected, and at 812 wells, the water temperature was measured. Results are compared to available long-term data on groundwater chemistry (1991-2020). In theory, temperature triggers a cascade of effects, where, finally, the depletion of dissolved oxygen (DO) causes a switch to anaerobic microbial processes and a deterioration of water quality. No direct relation between DO and water temperature was observed between 10 and 20 °C. However, many wells delivered anoxic groundwater, including the one with the highest measured temperature (27 °C). The highest temperatures were consistently observed near potential heat sources (local scale), with a rapid decrease in temperature with increasing distance from these sources. Long-term data from particular high-temperature wells revealed decreased dissolved oxygen after sudden temperature changes of > 5 K. On a regional scale, it is observed that groundwater-surface water interactions and aquifer properties play a pivotal role in oxygen availability and redox conditions. In conclusion, high-spatial-resolution sampling combined with long-term data analysis is needed to determine the impact of temperature on water quality.

Abstract

This study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment.

Abstract

Groundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers. However, only 45 studies were considered for this review after a screening concerning eliminating duplicate papers, a first selection based on title and abstract, and an analysis of topic compatibility through examination of the full texts. The analysed scientific production from all five continents covers 1995-2023 and was published in 29 journals. As a result of the review, GWT variations due to CC emerged as of global interest and have attracted attention, especially over the past two decades, with a multidisciplinary approach. A general increase in GWTs is noted as a primary effect of CC (especially in urban areas); furthermore, the implications of the temperature increase for contaminants and groundwater-dependent ecosystems were analysed, and various industrial applications for this increase (e.g. geothermy) are evaluated. It’s evident from the review that GWT is vulnerable to CC, and the consequences can be serious and worthy of further investigation.

Abstract

Drywells are extremely useful for coping with excess surface water in areas where drainage and diversion of storm flows are limited, facilitating stormwater infiltration and groundwater recharge. Drywells have been used for stormwater management in locations that receive high precipitation volumes, naturally or due to climate change; however, to date, they have not been developed in urban areas overlying karst landscapes. To test the performance of karst drywells, we constructed a pilot system for collecting, filtering, and recharging urban stormwater through drywells in karst rock. The study site is in the Judaean Mountains, an urban residential area in Jerusalem, Israel. The infiltration capacity of the drywells was evaluated using continuous and graduated water injection tests, and its effective hydraulic conductivity (K) was estimated. Drywells’ infiltration capacity was up to 22 m3 /hour (the maximum discharge delivered by a nearby fire hydrant), while monitored water levels in the drywells were relatively stable. Calculated hydraulic conductivities were in the range of K=0.1-100 m/ day, and generally, K was inversely proportional to the rock quality designation (RQD) index (obtained from rock cores during the drilling of the drywells). The pilot system performance was tested in the recent winter: during 9 days with a total rainfall of 295 mm, a cumulative volume of 45 m3 was recharged through the drywell, with a maximum discharge of 13 m3 / hour. High-conductivity karst drywells and adequate pre-treatment filtration can be valuable techniques for urban flood mitigation and stormwater recharge.

Abstract

he Namphu and Rangbua subdistricts in Ratchaburi province, in western Thailand, are affected by groundwater contamination. According to site characterization results, the aquifer has been contaminated with volatile organic compounds and heavy metals since 2014. Membrane filtration technology is an alternative method for treating groundwater to produce safe drinking water for household use. Nanofiltration membrane is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). This study aimed to determine the hydrochemistry of contaminated groundwater and examine the efficiency of nanofiltration membranes for removing pollutants in groundwater and the potential implementation of the membrane. The membrane module used in this study is cylindrical in shape of 101.6 cm long and 6.4 cm in diameter, and the membrane surface charge is negative with monovalent rejection (NaCl) of 85-95%.

The filtration experiments were conducted at a pressure of 0.4-0.6 MPa, which yielded flow rates of approximately 2 L/min. To examine the nanofiltration membrane efficiency, groundwater samples were extracted from four monitoring wells and were used as feed water. According to laboratory results, the nanofiltration maximum removal efficiencies for 1,2-dichloroethylene, vinyl chloride, benzene, nickel, and manganese were 97, 99, 98, 99, and 99%, respectively. However, the treatment efficiency depends on several factors, including pretreatment requirements, influent water quality and the lifespan of the membrane. Further research should be conducted to determine the maximum concentration of VOCs and heavy metals in the feed water before applying this treatment method to a large scale.

Abstract

In recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation.

Abstract

In the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science. The role of groundwater in complex adaptive socio-ecological systems at different scales is increasingly well-documented. Access to groundwater resources positively influences societal welfare and economic development opportunities, particularly in areas where surface waters are scarce. The potential adverse effects of human activities on the quantity or quality of groundwaters are also widely reported. Adopting a ‘properties’ approach, traditional social science perspectives typically describe aquifers as structuring the agency of human actors. To what extent might aquifers also have agency, exhibited in their capacity to act and exert power? Drawing on insights from 5 cities across sub-Saharan Africa, we argue for the agency of aquifers in light of their capacity to evoke change and response in human societies. In doing so, we draw on the concept of the more-than-human to argue for a more conscious consideration of the interaction between the human and non-human water worlds whilst acknowledging the critical role played by researchers in shaping these interactions.

Abstract

In response to the Western Cape’s worst drought experienced during 2015-2018, the City of Cape Town implemented various projects to augment its water supply, including desalination, re-use and groundwater. The Cape Flats Aquifer Management Scheme (CFAMS) forms one of the groundwater projects that includes groundwater abstraction and managed aquifer recharge (MAR). The Cape Flats Aquifer (CFA) is a coastal, unconfined, primary aquifer within an urban and peri-urban environment. As such, it is well situated to take advantage of enhanced recharge using high-quality advanced treated effluent but also has challenges related to seawater intrusion (SWI) and risk of contamination. MAR is currently being tested and implemented with a three-fold purpose: (1) to create hydraulic barriers against seawater intrusion and other contamination sources, (2) to protect groundwater-dependent ecosystems harbouring biodiversity, and (3) to increase storage and improve water quality to enhance resilience to effects of drought. As no legislation for MAR exists in South Africa, international guidelines are used to determine water quality requirements related to clogging environmental and health concerns. Further consideration includes aquifer-scale design, the interaction of multiple abstraction and injection wellfields within an area, and the design of individual boreholes to enhance yield and limit clogging. We aim to present progress made to date that includes exploration, wellfield development, monitoring, numerical modelling, aquifer protection, and the lessons learnt.

Abstract

Groundwater discharge is crucial for transporting terrestrial carbon into streams and rivers, but the effects of groundwater flow paths on terrestrial carbon inputs are poorly understood. Here, we investigated environmental tracers (EC, Cl-, 2H, 18O, 220Rn, and 222Rn) and carbon concentrations in riparian groundwater, streambed groundwater, and stream water over six groundwater-stream monitoring sites. Significantly high 220Rn and 222Rn activities in the stream and endmember analysis results of the environmental tracers reveal that vertical groundwater discharge from the streambed (VGD) and lateral groundwater discharge from the riparian zone (LGD) is of equal importance for the stream. We quantified VGD by modelling the detailed 222Rn and Cl- profiles at the streambed and then combined differential flow gauging to estimate LGD. VGD (2.9 ± 1.4 m2 d-1) prevailed in relatively wide and shallow channels, while LGD (2.6 ± 2.6 m2 d-1) dominated narrow and deep channels. Carbon measurements indicate that LGD had the highest CO2, CH4, DIC, and DOC, while VGD had relatively higher CO2 but lower CH4, DIC, and DOC than stream water. Our findings suggest that LGD is the primary carbon source for the stream, while VGD mainly dilutes the stream (except CO2). Finally, we observed that groundwater discharge and temperature overrode metabolism in controlling stream carbon dynamics, implying the importance of groundwater discharge for understanding stream carbon cycling. Overall, this study identified the impacts of groundwater flow paths on carbon exchanges between terrestrial and stream ecosystems.

Abstract

Water balance partitioning within dryland intermittent and ephemeral streams controls water availability to riparian ecosystems, the magnitude of peak storm discharge and groundwater replenishment. Poorly understood is how superficial geology can play a role in governing the spatiotemporal complexity in flow processes. We combine a new and unusually rich set of integrated surface water and groundwater observations from a catchment in semi-arid Australia with targeted geophysical characterisation of the subsurface to elucidate how configurations of superficial geology surrounding the stream control the variability in streamflow and groundwater responses. We show how periods of stable stream stage consistently follow episodic streamflow peaks before subsequent rapid recession and channel drying. The duration of the stable phases increases in duration downstream to a maximum of 44±3 days before reducing abruptly further downstream. The remarkable consistency in the flow duration of the stable flow periods, regardless of the size of the preceding streamflow peak, suggests a geological control. By integrating the surface water, groundwater and geological investigations, we developed a conceptual model that proposes two primary controls on this behaviour which influence the partitioning of runoff: (1) variations in the permeability contrast between recent channel alluvium and surrounding deposits, (2) the longitudinal variations in the volume of the recent channel alluvial storage. We hypothesise optimal combinations of these controls can create a ‘Goldilocks zone’ that maximises riparian water availability and potential for groundwater recharge in certain landscape settings and that these controls likely exist as a continuum in many dryland catchments globally.

Abstract

Groundwater arsenic (As) distribution in alluvial floodplains is complex and spatially heterogeneous. Floodplain evolution plays a crucial role in the fate and mobilization of As in the groundwater. This study presents how groundwater As enrichment is controlled by the spatial disposition of subsurface sand, silt, and clay layers along an N-S transect across the Brahmaputra river basin aquifer. Six boreholes were drilled in the shallow aquifer (up to 60 m) along this transect, and 56 groundwater samples were collected and analysed for their major and trace elements, SO4, PO4, dissolved organic carbon (DOC), and dissolved oxygen (DO). Groundwater As ranges from 0.1 to 218 μg/L on the northern bank while from 0.2 to 440 μg/L on the southern bank of the Brahmaputra. Groundwater in the southern bank is highly reduced (Eh -9.8 mV) with low DO and low SO4 (2 mg/L), while groundwater in the north is less reduced (Eh 142 mV) with low DO and higher SO4 (11 mg/L). Subsurface lithologies show that the aquifer on the southern bank has a very thick clay layer, while the aquifer on the northern bank is heterogeneous and interlayered with intermediate clay layers. Depth comparison of the groundwater arsenic concentrations with subsurface lithological variations reveals that groundwater wells overlain by thick clay layers have higher arsenic, while groundwater wells devoid of clay capping have lesser arsenic. Detailed aquifer mapping could be decisive in exploring potentially safe groundwater from geogenic contamination.

Abstract

A conceptual water budget model is required to “make groundwater visible” in the shared transboundary area of Estonia and Latvia, which doesn’t face any significant water management issues. Despite having a water management agreement since 2003, it wasn’t until 2018 that cooperation on groundwater began. In the EU-WATERRES project, the water balance modelling of the ~9,500 km2 transboundary (TB) area with MODFLOW 6 was performed. Based on budget calculations, the area’s average precipitation is 203 m3 /s, with ~50% (102 m3 /s) of it discharging to the sea as surface water. The infiltration share (7%, 14.4 m3/s) is a small fraction of overall precipitation, but as an average, it forms ~14% of surface water flow, with 98% of infiltrated groundwater forming the baseflow. Modelling produced two main conclusions: surface water and groundwater form a joint system in the upper ~150 m cross-section depth, and there is no preferred regional TB flow direction due to flat topography. This makes cross-border flow highly dependent on pumping close to the border area. The results of recent studies provide valuable information on groundwater’s importance in EE-LV TB areas and a basis for simple conceptual models to make groundwater visible to the general audience and decision-makers. These findings are critical for specialists in managing water resources in the region and will inform decisions related to the use and protection of groundwater in transboundary areas.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

The Galápagos Archipelago (Ecuador), traditionally considered a living museum and a showcase of evolution, is increasingly subject to anthropogenic pressures affecting the local population who has to deal with the challenges of accessing safe and sustainable water resources. Over the years, numerous national and international projects have attempted to assess the impact of human activities on both the water quality and quantity in the islands. However, the complexity of the stakeholders’ structure (i.e., multiple agents with competing interests and overlapping functions) and the numerous international institutions and agencies temporarily working in the islands make information sharing and coordination particularly challenging. A comprehensive assessment of water quality data (physico-chemical parameters, major elements, trace elements and coliforms) collected since 1985 in the Santa Cruz Island revealed the need to optimise monitoring efforts to fill knowledge gaps and better target decision-making processes. Results from a participatory approach involving all stakeholders dealing with water resources highlighted the gaps and potentials of water resources management in complex environments. Particularly, it demonstrated the criticalities related to data acquisition, sustainability of the monitoring plan and translation of scientific outcomes into common ground policies for water protection.

Shared procedures for data collection, sample analysis, evaluation and data assessment by an open-access geodatabase were proposed and implemented for the first time as a prototype to improve accountability and outreach towards civil society and water users. The results reveal the high potential of a well-structured and effective joint monitoring approach within a complex, multi-stakeholder framework.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions

Abstract

The interaction between dryland hydrological fluxes and the high spatial and seasonal climate variability is inherently complex. Groundwater recharge is episodic, and rivers are ephemeral. When flow occurs in the river network, water is lost through the riverbed, giving rise to focused recharge, which could be a significant part of total recharge. We have used the integrated and physically based MIKE SHE modelling system to analyze the hydrological processes and fluxes in the 7,715 km2 Hout-Sand catchment in the South African part of the Limpopo River Basin. The discharge hydrograph measured at the outlet station is highly episodic, with a small baseline flow component superimposed by high flow events in response to intense rainfall. Likewise, the groundwater hydrographs from the area are characterized by rapid increases in groundwater levels in response to high rainfall events with recurrence intervals of several years. Due to the scarcity of basic measurements and information, we used data products from satellite platforms to supplement the information on rainfall, evapotranspiration, soil moisture, land use and irrigated areas. We applied MIKE SHE to test different conceptual flow models of the catchment by calibrating the different models against direct measurements of river discharge and groundwater levels and indirect estimates of evapotranspiration and soil moisture from satellite products. By analyzing the simulated model dynamics and the resulting values for the calibration parameters, we identified the most plausible conceptual model, which then forms the basis for water resources assessment and management recommendations for the Hout-Sand catchment.